
Kalpa Publications in Computing

Volume XXX, 2022, Pages 146–150

Proceedings of V XoveTIC Conference. XoveTIC 2022

A System for Constituent and Dependency Tree
Linearization

Diego Roca, David Vilares, and Carlos Gómez-Rodríguez

Universidade da Coruña, CITIC, A Coruña, Spain
d.roca1@udc.es, david.vilares@udc.es, carlos.gomez@udc.es

Abstract

In this work, we introduce a framework that unifies existing implementations for the
tasks of constituent and dependency parsing as sequence labeling problems. The system
provides a way to encode both formalisms as sequences of one label per word, so they can
be used with any existing general-purpose sequence labeling architecture. More particu-
larly, we implement three linearizations to encode constituent trees and four linearizations
for dependency trees. All encoding functions ensure completeness and injectivity. We will
also train a sequence labeling neural system to learn such encodings, and compare their ef-
fectiveness on standard constituent (PTB and SPMRL treebanks) and dependency parsing
(a subset of treebanks from the UD collection) evaluation frameworks.

1 Introduction
Parsing is a natural language processing (NLP) task in which, given an input raw sentence, a
system automatically produces an output representing its syntactic structure. The most popular
and widely adopted formalisms to represent such structure are constituent and dependency
formalisms. On the one hand, the goal of constituent parsing is to obtain the syntactic structure
of a sentence as a phrase structure tree, a derivative from the subject-predicative division from
Greek and Latin. On the other hand, dependency parsing aims to generate a parse tree as a set
of binary directed relations between words called dependencies that describe the syntactic roles
(e.g., direct object, subject, adverbial modifier) that participate in the sentence. Although both
formalisms present differences, they also share limitations, in particular the limited speed of the
models used to obtain these syntactic representations. Transforming both of these problems
into a sequence labeling task provides an advantage in efficiency while keeping competitive
accuracy, and allows such representations to be learned by any black-box sequence labeling
neural system. Several tree linearizations have been proposed in the last few years to cast these
tasks as sequence labeling [3, 10, 6, 7] . However, there is no common suite that facilitates their
use under an integrated framework. In this work, we design such a suite. More particularly,
our system will allow the user to: (i) encode gold or predicted trees according to the desired
syntactic formalism and a number of configuration options, (ii) decode linearized trees into its
original representation, and (iii) train a neural sequence labeling system to perform parsing and
measure performance in terms of accuracy and speed.

A. Leitao and L. Ramos (eds.), XoveTIC2022 (Kalpa Publications in Computing, vol. XXX), pp. 146–150

A System for Constituent and Dependency Tree Linearization Roca, Vilares and Gómez-Rodríguez

2 Constituent Parsing as Sequence Labeling
Let w = [w1, w2, ..., w|w|] be an input sequence of words and let Tc|w| be the set of possible
constituent trees with |w| leaf nodes. To cast the task of constituent parsing as a sequence
labeling task we must define a set of labels Lc that allows us to encode each tree in Tc|w|
as a unique sequence of labels Lc|w| and an encoding function Fc|w| : Tc|w| −→ Lc|w| that
allows us to translate the trees into those labels. The labels in Lc will be shaped as a 3-tuple
lci = (nci, lci, uci) where lci is the last common ancestor between wi and wi+1, uci is (if exists)
the collapsed leaf unary chain[3] of wi and nci is the encoded value of the number of common
ancestors. For the nci field, three different encodings are proposed:

1. Fcabs|w| [3]: Encodes nci as the number of common ancestors between the words wi and
wi+1 (see ncABS

i in figure 1).

2. Fcrel|w| [3]: Encodes nci as the difference with respect to the number of common ancestors
encoded in nci−1. This considerably reduces the sparsity of the output vocabulary space
(see ncREL

i in figure 1).

3. Fcdyn|w| [10]: Encodes nci using Fcabs|w| depending if its value is inside a range empirically
defined, and as Fcrel|w| otherwise. This way, it takes advantage both of (i) Fcrel|w| performing
better for sentences with deeper constituent trees, and (ii) Fcabs|w| performing better for
shallower constituent trees (see ncDYN

i in figure 1).

S

PUNCT

.

VP

SBAR

S

VP+VBP

seem

NP+PRP

they

WHNP

WP

what

RB

not

VBP

are

NP

NNS

owls

DT

The

(a)

wi ncABS
i ncREL

i ncDYN
i

The 2 2 2
owls 1 -1 1
are 2 1 2
not 2 0 2

what 3 1 1
they 4 1 1
seem 1 -3 1

. 1 0 1

(b)

Figure 1: Example of a constituent tree with collapsed unary branches (a) and how the nci field
is encoded using the naive absolute (ncABS

i , red), naive relative (ncREL
i , blue) and dynamic

encodings (ncDYN
i).

3 Dependency Parsing as Sequence Labeling
Let Td|w| = (V,A) be a dependency tree for a sentence w = [w1, ..., w|w|] where i ∈ V represents
the position of the word wi, and A is the set of binary relations between indexes, such that
each a ∈ A has the form a = (h, r, d) where: h ∈ V represents the head of the relation,
d ∈ V represents the dependant of the relation, and r ∈ R represents the type of relation
that exists among them such that R is a set of syntactic functions (e.g. subject, or direct

147

A System for Constituent and Dependency Tree Linearization Roca, Vilares and Gómez-Rodríguez

object). To cast the task of dependency parsing as a sequence labeling task we must define
a set of labels Ld that allows us to encode Td|w| as a unique sequence of labels Ld|w|, and
an encoding function Fd|w| : Td|w|| −→ Ld|w| that allows us to translate the trees into those
labels. All the encodings implemented deal with the conversion of the set of dependency edges
corresponding to a sentence w to a sequence of labels shaped as ldj = (xj , rj), where rj ∈ R
is the corresponding dependency type to word wj and xj is the encoding-specific [6] value that
defines how a given arc is encoded:

1. Fdabs|w| : Encodes xj as the value of hj in aj (see xABS
j in figure 2).

2. Fdrel|w|: Encodes xj as the difference of hj − dj in aj (see xREL
j in figure 2).

3. Fdpos|w| : Encodes xj as a tuple (pj , oj) where pj indicates the part-of-speech (POS) tag at
position hj and oj indicates (i) the direction from where the head is (being to the left if
oj < 0 or to the right if oj > 0), and (ii) the number of POS tags pj found in the sentence
until the correct one (see xPOS

j in figure 2).

4. Fdbrk|w| : Encodes xj as a string defined by the regular expression (<)?((\)*|(/)*)(>)? where
the presence of each character in wj indicates an outgoing / incoming dependency arrow
(see xBRK

j in figure 2). We also implemented modifications Fdbrk−2pg
|w| and Fdbrk−2pp

|w| to
deal with non-projective trees, following the variations introduced in [7].

wi The owls are not what they seem .
i 1 2 3 4 5 6 7 8

POS DT NNS VBP RB WP PRP VBP PUNCT
tj det nsubj root advmod obj nsubj ccomp punct

xABS
j 2 3 0 3 7 7 3 3

xREL
j +1 +1 -3 -1 2 +1 -4 -5

xPOS
j (+1,NNS) (+1,VBP) (0,ROOT) (-1,VBP) (+1,VBP) (+1,VBP) (-1,VBP) (-2,VBP)

xBRK
j <\ <\ ///> < <\\> >

det nsubj

root

advmod

obj

nsubj

ccomp

punct

Figure 2: Encoding of a given dependency tree with the xj field encoded according to the naive
absolute, naive relative, POS-based, and bracketing-based encodings.

4 Results and Conclusions
We check the learnability of the encodings by training the MACHAMP [9] neural sequence
labeling model. Two sets of experiments were run: (i) with the inclusion of multilingual BERT
[2] embeddings and (ii) with the inclusion of BERT embeddings and multi-task learning [1]
capabilities to predict the part-of-speech tags too. The treebanks employed are the English
Penn Treebank [4] and SPMRL1 [8] for constituent parsing, and Universal Dependencies [5] for

1SPMRL includes Basque, French, German, Hebrew, Hungarian, Korean, Polish and Swedish languages

148

A System for Constituent and Dependency Tree Linearization Roca, Vilares and Gómez-Rodríguez

dependency parsing (for better comparison, we use the same languages for both formalisms).
See tables 1 and 2 for constituent and dependency parsing results on the test sets.

Based on the experimental results, for constituent parsing the best results across the
board are obtained by the dynamic encoding. For dependency parsing there is more diver-
sity, bracketing-based encodings seem to perform overall better, although simpler encodings
such as the relative positional encoding still perform robustly. Finally, the use of multi task
learning does not come with consistent improvements; more experiments are required to better
understand the reasons for this behavior, and we leave this as future work.

Tool Enc Eng Basq Fr Ger Hebr Hun Kr Po Sw
MACHAMPBERT Fcabs|w| 92.11 78.16 90.80 89.61 87.92 93.57 88.14 95.05 76.81

Fcrel|w| 92.23 80.38 90.04 88.86 88.65 93.23 87.21 94.79 79.27
Fcdyn|w| 93.35 80.93 90.38 89.99 88.92 93.47 87.60 95.55 80.95

MACHAMPBERT
MTL Fcabs|w| 92.87 75.23 89.00 87.12 87.36 91.61 85.68 93.40 74.45

Fcrel|w| 92.51 78.25 87.10 88.45 88.39 90.63 85.03 92.86 75.95
Fcdyn|w| 93.09 79.15 87.36 88.66 88.63 91.29 85.58 94.47 79.49

Table 1: F-Score (higher is better) for constituent parsing on the test sets of the PTB and
SPMRL treebanks.

Tool Enc Eng Basq Fr Ger Hebr Hun Kr Po Sw
MACHAMPBERT Fdabs|w| 83.53 87.82 84.53 95.21 66.70 35.82 69.99 97.14 66.24

Fdrel|w| 85.92 88.90 85.92 97.53 82.68 62.23 72.95 98.55 78.26
Fdpos|w| 86.42 87.56 83.42 89.96 83.51 75.68 51.33 92.11 78.69
Fdbrk|w| 88.20 90.86 88.07 96.27 89.17 74.42 77.07 97.58 83.83
Fdbrk−2pg

|w| 88.34 91.07 88.20 97.11 89.03 73.91 77.29 97.56 83.88
Fdbrk2pp

|w| 88.34 90.58 88.34 97.25 89.06 73.89 76.57 97.88 83.74
MACHAMPBERT

MTL Fdabs|w| 78.93 81.82 73.93 93.63 61.93 20.74 58.83 95.98 51.37
Fdrel|w| 82.92 86.23 82.14 93.48 77.20 51.45 71.52 96.12 71.61
Fdpos|w| 85.73 86.93 81.92 88.16 74.12 71.82 51.12 92.30 77.71
Fdbrkd

|w| 86.41 89.96 86.31 95.02 85.03 58.88 76.19 96.13 78.11
Fdbrk−2pg

|w| 86.12 89.12 86.07 95.11 84.87 67.23 76.06 96.02 78.05
Fdbrk−2pp

|w| 86.36 89.66 86.13 95.07 82.05 67.24 76.18 96.11 77.89

Table 2: Labeled attachment score (higher is better) for the dependency parsing encodings on
the test sets of the UD treebanks used in this work.

Conclusion In this work, we present a suite that includes several linearization algorithms to
encode constituent and dependency trees as a sequence of labels, that can be learned by any
generic sequence labeling system. The results on standard evaluation frameworks show that
such sequence labeling models obtain competitive results, and that the way in which the trees
are encoded plays an important role.

149

A System for Constituent and Dependency Tree Linearization Roca, Vilares and Gómez-Rodríguez

References
[1] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.
[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[3] Carlos Gómez-Rodríguez and David Vilares. Constituent parsing as sequence labeling. arXiv

preprint arXiv:1810.08994, 2018.
[4] Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. Using

Large Corpora, 273, 1994.
[5] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D Manning,

Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. Universal dependencies
v2: An evergrowing multilingual treebank collection. arXiv preprint arXiv:2004.10643, 2020.

[6] Michalina Strzyz, David Vilares, and Carlos Gómez-Rodríguez. Viable dependency parsing as
sequence labeling. arXiv preprint arXiv:1902.10505, 2019.

[7] Michalina Strzyz, David Vilares, and Carlos Gómez-Rodríguez. Bracketing encodings for 2-planar
dependency parsing. arXiv preprint arXiv:2011.00596, 2020.

[8] Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra Kübler, Yannick Versley, Marie Candito,
Jennifer Foster, Ines Rehbein, and Lamia Tounsi. Statistical parsing of morphologically rich
languages (spmrl) what, how and whither. In Proceedings of the NAACL HLT 2010 First Workshop
on Statistical Parsing of Morphologically-Rich Languages, pages 1–12, 2010.

[9] Rob van der Goot, Ahmet Üstün, Alan Ramponi, Ibrahim Sharaf, and Barbara Plank. Mas-
sive choice, ample tasks (machamp): A toolkit for multi-task learning in nlp. arXiv preprint
arXiv:2005.14672, 2020.

[10] David Vilares, Mostafa Abdou, and Anders Søgaard. Better, faster, stronger sequence tagging
constituent parsers. arXiv preprint arXiv:1902.10985, 2019.

150

	1 Introduction
	2 Constituent Parsing as Sequence Labeling
	3 Dependency Parsing as Sequence Labeling
	4 Results and Conclusions
	References

